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SHOT NOISE GENERATED BY A SEMI-MARKOV PROCESS

Woollcott Smith

In this note a model for shot noise generated by a semi-Markov process is
developed. The moments of the shot noise process are found, and some appli-
caions of this model are briefly indicated.

SECTION 1: A General Shot Noise Model

Before developing the shot noise model, we introduce and define some no-

tation for semi-Markov processes. In semi-Markov processes, S-MP, as in

Markov processes, each jump is a regeneration point eliminating the influence

of past events. However, in the S-MP the distribution of times between

jumps is arbitrary, whereas in the Markov process the sojourn time in any

state is exponentially distributed. Let t be the time of the n-th tran-
n

sition, n - 0,1,2,..... Throughout this paper, we let to = 0. Let Xn be

the value of the S-4IP after the n-th transition. The process X ib an

homogeneous Markov chain. The S-MIP, X(t), is completely defined by a set of

defective probability distributions, Gii; Gij(•) : 1 and G(ij() - 0.

G(ij(t) is the probability that the sojourn time in state i has duration

t and ends with a Jump to state J,

G(t) Pr(X -J, t -t stIX -i).
ij n+l n+1 n n

In this paper, we will assume thaL the S-MP, X(t), has a finite number of
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states i, 0 - O,1,2,,..,N, that

N
(1) Si(t) - 0 Gij(t)

is not a lattice distribution function, and that

(2) a , tdSi(t) C

Let P denote the one-step transition matrix for the embedded Markov chain

Xn, P - [Gij(*)]. We assume that the matrix P is irreducible and has the

stationary probability vector Tr -(wO,*I,..., N),

(3) V - UP.

The shot noise process, Y(t), is then defined by

(4) Y(t) = X f(t-t nI X n, W)n
O<t :5tn

where f(t,j,w) is a known function and (W n is a sequence of independent

random variables with distribution function

(5) H(x) - Pr(Wn ! x).

The shape of the n-th pulse which is initiated at time tn depends on the

state of the S-MP, X , and the random variable Wn. The model presented here

is a straightforward generalization of a shot noise process generated by a

renewal process investigated by TakAcs (1956).

We define the distribution function for the process Y(t),

Fj(t,y) - Pr(Y(t) S yIX 0 -J)

and let

(6) t (tW) - e d F (t'x)
j wX.



denote its characteristic function. Let

S|÷® iwf(t,J,x)
S(7) r (t,Wo ) e dH(x)

denote the characteristic function of a single impulse.

THEOREM 1: The functions 0i(t,.w) satisfy the system of linear integral

equations

N it N
(8) Pi(t,') I r0(t-t',W) 0 (t-t',w) dG-ij(e0 + 1 1 Gii(t).J=0 fo j o

PROOF: Y(t) - 0 if t1 > t and if t 1 < t then Y(t) is the sum of two

random variables, f(t-t 1 ,Wl) and Y(t-tl). If 4i(t,wix,j) denotes the

characteristic function of the conditional distribution of Y(t), givet; that

the first transition occurs at time t, x and is a transition to the state

J, then

0it•xj = @(t-x,w)rji(t-x,w) x S t

1 x> t.)~')

From this expression, we obtain the unconditional characteristic function

given in equation (8).

The general solution for this system of integral equations is not known;

however, one can obtain from (8) equations for the moments of the Y(t) pro-

cess which can be solved. Let

(9) 14n (t;j) _ ,~yn(t),, 0 -J)

and let

(10) M - Lim N (t;J)
t •



4

denote the moments of the stationary process if it exists. Further let

Va

(11) Xn(t,j) E~fn(t,J,W)].

THEOREM 2: The first two moments of the Y(t) process are

t tN
(12) M1 (t;j) = f X1 (t-t',i) dm3 ,(t')

* ~0 i-CO

and

(13) M2 (t;.) - J {2Mg(t-t';i)Xl(t-t',i) + ,2 (t-t',)} dmji(t'),
0 J=0

provided that the integrals exist, where

(14) m ij(t) X G G(n) ij (t),

n=l

and G(n) is the n-fold convolution

G(n) ) t G(n-1) (t-t') dGik(t').ij~t) O k XO kj i

If as t + • tA 1 (t,i) + 0 and tA2 (t,i) - 0 for i - 1,2,...,N, then

the first and second moments of the stationary process are

(15) M - J0  i )l(ti) dt

and

(16) M2 Y - 0 i0 j{2Ml(t;i)al(t'i) + X2(t'i) dt,

provided that the integials Pxist, where

N
Cl = ) i ;

i-OC

and ai are defined in (2) and (3).
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PROOF: Differentiating (8) with respect to c and setting w 0 and multi-

plying by -i we obtain

(17) Ml(t;j) = f (Al(t-t',k)+Ml(t-t';k)) dGjk(t'), j 0,1,2,.,N.

This system of Volterra integral equations (Triconmi (1957) p. 40) has a solu-
tion given by (12). One obtains the equations for the second moments by dif-
ferentiating (8) twice with respect to w and solving the correspondirng system

of integral equations.

To show that (15) holds, we first write

ft/2 N(18) Lira M l(t;j) = Lirm Y A 1(t-tl,i) dm W~t)

I N
+ Lim Y A1 (t-tf,i) dm3 i(ti).

t -0 00 t/2 1- 1Oj

A well-known result for Markov renewal processes, Pyke (1961), states that

ir h(19) Lim (mi(t+h)_m (t)) .t ji a

Under the conditions of Theorem 2, the first integral on the right-hand side
of (18) goes to 0 as t - •, and using the result given in (19) as t
the second term goes to (15). The proof for the second moment follows by the

same general argument.

The first moments for the stationary process are obtained directly from
equation (12). However, to obtain an explicit solution for the second moment

M2, we will consider the special case

(20) f(t,j.w) - wa exp(-yt).

If E(W] - < ' and Var[W] a2 <, then

(21) X 1(t,j) p aexp(-y t)
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and

(22) X2 (tj) 1 2 +a2) a 2 exp2(-2y 0.

The exponential form of X1 and X2 enables us to take advantage of the re-

lationship between the convolution operator and the Laplace-Stieltjes trans-

forms. Let G*i (s) and mij(s) denote the Laplace-StieltJes transform of

G ij(t) and m ij(t) respectively. It can be shown (Pyke (1961)) that

(2 3) I* (s) - G* (s)[1-6 (s)]-

where M* and G* are N by N matrices whose ij-th element is m* andii

G*ij respectively. For the special case that we are considering, the Laplace

transform of (12) is

(24) M*(s;J) (s).

Making use of the exponential form of X1, equation (16) becomes

2 (if2+2)

A•t - iT 2uaiM* (yii) + a 1YSi 0 2 Yi

Equations (25), (24) and (23) then give a straightforward, if somewhat cumber-

some, method for computing the variance of this stationary process.

In the interest of brevity, we have not discussed other properties of the

Y(t) process that can be obtained by similar arguments. For instance, one

can obtain from (8) equations for all the moments of the Y(t) process. The

covariance function of the Y(t) process can be found directly from the re-

sulis given here by defining a ti-4 process Z(t) - Y(t) + !7(t+h). This pro-

cess is also a shot noise process and the covariance of tbe Y(t) process

can be fowid from the variance of Lhe Z(t) process, since

Cov(Y(t),Y(t+h)) - l[Var(Z(t)) - Var(Y(t)) - Var(Y(t+h))).

~L2
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SECTION 2: Discussion

A shot noise process generated by a semi-Markov process can arise in many

situations where for various reasons one cannot consider the impulses to be

generated by a renewal process. One such situation is the modeling of traffic

noise generated by automobiles on a highway. This model has been described by

Marcus (1971).

In neurophysiology, the analysis of neural spike trains indicates that

the interspike times are often serially dependent random variables (Perkel,

Gerstein and Moore, 1967). Serial dependence can be simply introduced by

using S-MPs. Models for neuion firing proposed by Coleman and Gastwirth

(1969) lend to spike train processes that can be described by semi-Markov

processes (Smith, 1971).

Shot noise models can also be applied to queueing theory. Tak-cs (1958) has

pointed out that the infinitely many server queue is a special case of the

shot noise process. In particular the S-MP/GI/ queue is a special case of

the model developed in this note where

1if 0 5 t 5 1
f(t,i,w)

0 otherwise

and the random variable W represents the service time of the n-th individual.
n

For simplicity, we have discussed only the one-sided impulse function,

f(t,i,w) - 0 for t < 0. Hlowever, the two-sided impulse function can also be

analyzed using the same techniques. For instance in the two-sided case

equation (8) of Theorem I becomes

(26) 0 i(t,W) = r(t-t',W) 0 (t-t'W) dG ij(t)

the integral equations for the one-sided impulse function is of course a

special case of thii cqwatlon. From (26) one can find integral equations for



the moments of the two-sided shot noise process. For the two-sided process

the results in Theorem 2 are the same except that the upper limits of inte-

gration in equations (12) and (13) are infinity instead of t, and the lower

limits of equations (15) and (16) are (--) instead of 0. Marcus (1971)

used this two-sided shot noise model to describe traffic noise near a highway.

He found the mean and variance of the stationary process by using different,

more heuristic methods.

In general, the usefulness of the shot noise process discussed in this

note is that complex stochastic systems can be represented in a model which can

be analyzed using straightforward mathematical techniques.



9

REFERENCES

Coleman, R. and Gastwlrth, J.L. (1969). Some models for interaction of renewal
processes related to neuron firing. J. Appl. Prob. 6, 38-58.

Gerstein, C.L. and Mandelbrot, B. (1964). Random walk models for spike acti-
vity of a simple neuron. Biophys. J., 4, 41-68.

Gilbert, E.N. and Pollak, H.C. (1960). Amplitude distribution of shot noise.
Bell. Sys. rech. J., 39, 333-350.

Marcus, Allan H. (1971). Stochastic models of some environmental impacts of
highway traffic. 1: A two-sided filtered Markov renewal process.
The Johns Hopkins Uni'ersi..y Teohnical Report No. 156.

Pyke, Ronald (1961). Markov renewal processes with finitely many states.
Ann. Math. Stat. 32, 1243-1259.

Perkel, George L., Gerstein, George L. and Moore, George P. (1967). Neural
spike trains and stochastic point processes, I. The single spike train.
Biophys. J. 7, 391-418.

Smith, Woollcott (1971). A general shot noise model applied to neural spike
trains. Proceeding of the Third Annual Southeastern Symposium on System
Theorj, Vol. 2 (April 5-6, 1971).

Stevens, Charles F. (1966). Nivophbsiology: A Pripwr. John Wiley & Sons,
New York.

Srinivasan, S.K. and Rajamannur, G. (1970). Counter models and dependent re-
newal point processes related to neural firing. ?4 ho2•tial Biosctencee
7, 27-39.

Tak~cs, L. (1956). On secondary stochastic processes generated by recurrent
processes. Acta. Acad. Sci. Hung. ' 17-29.

Takacs, L. (1958). On a coincidence problem in telephone traffic.
Aota. Math. Acad. Sat*. Hun)w., 6, 363-390.

ten Hoopen, H. and Reu\,en, H.A. (1968). Recurrent point processes with de-
pendent interference with reference to neural spike trains.
Matherr•tioaZ BiosC~~neO 2, 1-1O.

ten Booper, H. and Reuven, H.A. (1965). Selective interactiona of two recur-
rent processes. J. Appi. 1hmob. 2, 286-292.



DOCUL"14T CU1'iuL DATA -? RA D
(Secittt. elts*111ftCtet 0 fl-,tt. h.4y of obetrarf vrax 1--fotiFlt mus ~ t bA on *itehen tho ow.,11 r-rt to cj.**a1*idj

I 0AIGINATINC. ACTIVITY (CorporweauuviI) 4.J I?- O0T SECU# TV -LA31;CTO

University of North Carolina UN-\CI AS~SIF)f
Department of Statistics 2b. GrnuP

Chapel Hill, North Carolina 27514
3. RLPORT TITLE

SHOT NOISE GENERATED BY A SEMI MP vIRKOV PROCESS

4.D 5CnCIP T9IV NOTES (Type * roolt~t *n tnc~eIve datoo)

Scientific InLerizim

S. AU'THORM3 (FUS1 MAW atidda ~Ida~ itiaI Ixotmats.)

WoolicotL Smith

4. LP034Y DATE 7C rOV&L NO. OF I*AG5S 6NoOrns

1972 10 13_____

SIM.O Comy"ACXf aft G"^T No 54 I~t "I kNU 9AI64tal

AFOSR 68-1415
b. PROJECT NO.

9749

611021.-IP 4t~ A7~4~t ~tp .at

-A. Appr ove.d for public release, di .;ti dULi0Tn 1111itilited.

11 Wtlt-L Lw.L Yt tYN T AnS*y 
*4* IhI* LI v I' ~ V1

Ai(: I, 1(orkI T11(k: o I I(J I~)i~

A rrTwdel for nhtit ktotl ~e ra'~tod by .1 semi~ - Yd.-%rikov procct: n is~

doviŽoptc~l '11m, monomnrd of (le Shot no sounllcd '~r

anti some api~c.1timi~s of thi. "' modcl .ti' rit-fy intclict 'arI.

"473I

,#I.4 . .*


